当前位置: 首页 > 科学研究 > 学术论文 > 正文 >

SPX family response to low phosphorus stress and the involvement of ZmSPX1 in phosphorus homeostasis in maize

时间: 2024-06-05 点击次数:次 作者:刘丹


https://doi.org/10.3389/fpls.2024.1385977

Bowen Luo, Javed Hussain Sahito, Haiying Zhang, Jin Zhao, Guohui Yang, Wei Wang, Jianyong Guo, Shuhao Zhang, Peng Ma, Zhi Nie, Xiao Zhang, Dan Liu , Ling Wu, Duojiang Gao, Shiqiang Gao, Shunzong Su, Zeeshan Ghulam Nabi Gishkori and Shibin Gao

Abstract

Phosphorus (P) is a crucial macronutrient for plant growth and development, and low-Pi stress poses a significant limitation to maize production. While the role of the SPX domain in encoding proteins involved in phosphate (Pi)     homeostasis and signaling transduction has been extensively studied in other model plants, the molecular and functional characteristics of the SPX gene family members in maize remain largely unexplored. In this study, we identified  six SPX members, and the phylogenetic analysis of ZmSPXs revealed a close relationship with SPX genes in rice.    The promoter regions of ZmSPXs were abundant in biotic and abiotic stress-related elements, particularly associated with various hormone signaling pathways, indicating potential intersections between Pi signaling and hormone signaling pathways. Additionally, ZmSPXs displayed tissue-specific expression patterns, with significant and differential    induction in anthers and roots, and were localized to the nucleus and cytoplasm. The interaction between ZmSPXs    and ZmPHRs was established via yeast two-hybrid assays. Furthermore, overexpression of ZmSPX1 enhanced root   sensitivity to Pi deficiency and high-Pi conditions in Arabidopsis thaliana. Phenotypic identification of the maize transgenic lines demonstrated the negative regulatory effect on the P concentration of stems and leaves as well as yield. Notably, polymorphic sites including 34 single-nucleotide polymorphisms (SNPs) and seven insertions/ deletions (InDels) in ZmSPX1 were significantly associated with 16 traits of low Pi tolerance index. Furthermore, significant sites were classified into five haplotypes, and haplotype5 can enhance biomass production by promoting root development. Taken together, our results suggested that ZmSPX family members possibly play a pivotal role in Pi stress signaling in plants by interacting with ZmPHRs. Significantly, ZmSPX1 was involved in the Pi-deficiency response verified  in transgenic Arabidopsis and can affect the Pi concentration of maize tissues and yield. This work lays the groundwork for deeper exploration of the maize SPX family and could inform the development of maize varieties with improved Pi efficiency.

Keywords

maize, low-Pi stress, SPX gene family, PHRS, candidate gene association analysis

 

上一篇:A teosinte-derived allele of ZmSC improves salt tolerance in maize

下一篇:Comprehensive identification of maize ZmE2F transcription factors and the positive role of ZmE2F6 in response to drought stress