Journal:Plant Breeding
Author: Langlang Ma, Zhongrong Guan, Zhiteng Zhang, Xiaoxiang Zhang, Yanling Zhang, Chaoying Zou, Huanwei Peng, Guangtang Pan, Michael Lee, Yaou Shen*, Thomas Lubberstedt.
Abstract:
Leaf‐related traits (leaf length, leaf width, leaf area and leaf angle) are very important for the yield of maize (Zea mays L) due to their influence on plant type. Therefore, it is necessary to identify quantitative trait loci (QTLs) for leaf‐related traits. In this report, 221 doubled haploid lines (DHLs) of an IBM Syn10 DH population were provided for QTL mapping. In total, 54 QTLs were detected for leaf‐related traits in single environments using a high‐density genetic linkage map. Among them, only eight common QTLs were identified across two or three environments, and the common QTLs for the four traits explained 4.38%–19.99% of the phenotypic variation. qLL‐2‐1 (bin 2.09), qLW‐2‐2 (bin 2.09), qLW‐6‐3 (bin 6.07) and qLA‐5‐2 (bin 2.09) were detected in previous studies, and qLL‐1‐1, qLAr‐1‐1, qLAr‐2‐1 and qLA‐7‐1 may be new QTLs. Notably, qLW‐6‐3 and qLA‐5‐2 were found to be major QTLs explaining 19.99% and 10.96% of the phenotypic variation, respectively. Interestingly, we found three pairs of QTLs (qLW‐2‐2 and qLAr‐2‐1, qLW‐8‐1 and qLL‐8‐2, qLL‐3‐3 and qLAr‐3‐3) that control different traits and that were located on the same chromosome or in a nearby location. Moreover, nine pairs of loci with epistatic effects were identified for the four traits. These results may provide the foundation for QTL fine mapping and for an understanding of the genetic basis of variation in leaf‐related traits.