当前位置: 首页 > 科学研究 > 学术论文 > 正文 >

Genome-wide analysis of Water-stress-responsive microRNA expression profile in tobacco roots

时间: 2014-11-04 点击次数:次 作者:


Journal: Functional & Integrative Genomics June 2014, Volume 14, Issue 2, pp 319-332

Author: Fuqiang Yin, Jian Gao, Ming Liu, Cheng Qin, Wenyou Zhang, Aiguo Yang, Mingzhong Xia, Zhiming Zhang, Yaou Shen, Haijian Lin, Chenggang Luo, Guangtang Pan

Abstract:

MicroRNAs (miRNAs) play a pivotal role in post-transcriptional regulation of gene expression in plants. In this study, we investigate miRNAs in an agronomically important common tobacco in China, named Honghua Dajinyuan (a drought-tolerant cultivar). Here, we report a comprehensive analysis of miRNA expression profiles in mock-treat grown (CK) and 20 % polyethylene glycol-grown (PEG-grown) tobacco roots using a high-throughput sequencing approach. A total of 656 unique miRNAs representing 53 miRNA families were identified in the two libraries, of which 286 unique miRNAs representing 162 microRNAs were differentially expressed. In addition, nine differentially expressed microRNAs selected from different expressed miRNA family with high abundance were subjected to further analysis and validated by quantitative real-time PCR (Q-PCR). In addition, the expression pattern of these identified candidate conserved miRNA and target genes of three identified miRNA (nta-miR172b, nta-miR156i, and nta-miR160a) were also validated by Q-PCR. Gene ontology (GO) enrichment analysis suggests that the putative target genes of these differentially expressed miRNAs are involved in metabolic process and response to stimulus. In particular, 25 target genes are involved in regulating plant hormone signal transduction and metabolism, indicating that these association microRNAs may play important regulatory roles in responding to PEG resistance. Moreover, this study adds a significant number of novel miRNAs to the tobacco miRNome.

Link: http://link.springer.com/article/10.1007/s10142-014-0365-4

 

上一篇:Molecular phylogenetic characterization and analysis of the WRKY transcription factor family responsive to Rhizoctonia solani in

下一篇:Heterosis in Early Maize Ear Inflorescence Development: A Genome-Wide Transcription Analysis for Two Maize Inbred Lines and Their Hybrid